Difference Between Binary Tree and Binary Search Tree

Difference Between Binary Tree and Binary Search Tree – BT vs BTS

If you’re learning data structures, you’ve probably heard of Binary Tree and Binary Search Tree (BSTs). While they may look similar, they have key differences in storing and organizing the data.

 

In this post, let’s break down the difference in a simple and clear way.

 

 

Difference between Binary Tree and Binary Search Tree
Difference between Binary Tree and Binary Search Tree

What is a Binary Tree?

A Binary Tree is a tree data structure where each node can have at most two children:

  • Left child
  • Right child

It’s used to represent hierarchical data and doesn’t follow any sorting rule.

Example:

A
/ \
B C
/ \
D E

There’s no order between the values of parent and child nodes.

 

What is a Binary Search Tree (BST)?

A BST is a type of BT that follows a special rule:

  • Left child < Parent
  • Right child > Parent

This rule helps keep the tree sorted, which makes searching and inserting data faster.

Example:

50
/ \
30 70
/ \ \
20 40 90

Each node follows: Left < Root < Right

 

Key Differences:

Feature                                 BT                                              (BST)

Structure Rule                    No specific rule                             Left < Root < Right
Data Arrangement            Random / unordered                   Sorted by value
Search Time                        Slower (O(n))                                Faster (O(log n), if balanced)
Use Case                              General tree problems                 Fast searching, insertion, deletion
Inorder Traversal              Any order                                       Always sorted
Real-world Use                  Expression trees, parsing           Databases, search systems

In Simple Words:

  • A Binary Tree is just a way to connect nodes — no rules about values.
  • A BST is a smart Binary Tree that keeps data sorted and searchable.

 

Tree Data Structure

 

Binary Tree Node:

class Node:
def _init_(self, value):
self.value = value
self.left = None

self.right = None

 

BST Insertion:

def insert(root, value):
if root is None:
return Node(value)
if value < root.value:
root.left = insert(root.left, value)
else:
root.right = insert(root.right, value)

return root

 

Interview Tips:

Q: Is every BST a Binary Tree?
A: Yes.

Q: Is every Binary Tree a BST?
A: No.

 

Final Summary:

BT                                  (BST)

Just a tree structure            Sorted tree with rules
No order of values               Follows left < root < right rule
Slower operations                Faster search and insert

 

FAQS:

Difference between binary tree and AVL tree?

Difference between AVL tree and red-black tree?

Difference between AVL tree and binary search tree pdf

What is the difference between binary search tree and optimal binary search tree?

Difference between linear search and binary search

Leave a Comment

Your email address will not be published. Required fields are marked *